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We show that in generic situations a reversible periodic driving of a Stokes flow will not result in a
reversible flow field. Each eigenmode of the Stokes operator responds with a phase delay that depends on
frequency and damping, resulting in a viscous dephasing that destroys time reversal symmetry and hence
prepares for chaotic advection. The general theory is illustrated for a two-dimensional vortex pattern that can
be generated in current driven flows in a magnetic field.
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I. INTRODUCTION

Reversibility of low Reynolds number flows can be im-
pressively demonstrated with a setup introduced and popu-
larized by G. I. Taylor �1�: a blob of dye is introduced in a
narrow gap between two concentric cylinders and then
stretched to near invisibility by the rotation of the inner cyl-
inder. When the rotation is reversed, the blob reforms almost
perfectly. This feature of low Reynolds number flows is gen-
erally accepted and hence avoided in systems designed to
study chaotic advection �2–10�. However, the Lorenz-force
driven systems used by Gollub et al. �11–13� seem to defy
this principle: they are driven by periodic currents but nev-
ertheless show chaotic particle advection. So how is revers-
ibility broken?

A natural candidate for reversibility breaking is the non-
linearity, with its quadratic dependence on the velocity field.
However, even if this term remains small and can be ne-
glected, a reversible driving need not lead to a reversible
response. We verify this with a decomposition of the velocity
field and the spatial dependence of the driving force in terms
of eigenmodes of the Stokes equation. As we will show,
eigenmodes excited by the external force follow the force
with a specific time delay that depends on frequency and
damping rate. Thus if several modes are excited they will
show different delays and this difference destroys reversibil-
ity. Time reversibility thus is lost by a viscous dephasing
between the different Stokes modes.

II. CHARACTERISTIC SCALES

The experiments �11–13� deal with a two-dimensional
�2D� flow, but the phenomenon is more general and can oc-
cur also in 3D situations. What is significant is that the flow
be driven by volume forces that set the scale for the fluid
response. Imagine then a flow driven by some kind of exter-
nal volume force, e.g., a pressure gradient or the Lorentz
force in the 2D experiments. In the Navier-Stokes equation
such a forcing can be captured by a divergence-free volume
force,

�tu + �u · ��u = − �p + ��u + f�r,t� . �1�

A typical forcing is

f�r,t� = f0f�r�ei�t, �2�

with amplitude f0, spatial dependence f�r�, and a periodic
time dependence, exp�i�t�. If imaginary parts are taken, the
time-dependence of the driving becomes sin �t and has the
symmetry

f�− t� = − f�t� . �3�

If the flow inherits this symmetry, perhaps with respect to
another zero in time t0, i.e., if

u�t − t0� = − u„− �t − t0�… , �4�

then advected particles reverse their paths, x�t− t0�=−x(−�t
− t0�), and return exactly to their initial points after one pe-
riod: there is no room for any nontrivial advection.

In order to estimate the size of the different terms in the
Navier-Stokes equation �1� we take a length scale L charac-
teristic of the spatial variations of the forcing and f0 �with the
dimensions of an acceleration� as a measure of the driving
strength. In addition, we have the external frequency �. The
amplitude of the velocity field U0 follows from the balance
of forces, and will be a function of these external parameters.
The size of the various terms in the Naviers-Stokes equation
then is

�tu + �u · ��u = − �p + ��u + f�r,t�

�U0 U0
2/L U0

2/L �U0/L2 f0 �5�

Since the velocity scale will be set by f0, the nonlinear term
can be neglected if

U0
2/L � f0. �6�

With this term �and the pressure� gone, three terms are left
and there are two ways to balance the forcing f0: In the high
frequency limit one can expect the time derivative to domi-
nate, in which case the velocity can be estimated to be U0
� f0 /� and the condition �6� that the inertial term can be
neglected becomes f0�L�2. In the low frequency limit the
forcing is balanced by the viscous term, the velocity be-
comes U0�L2f0 /�, and the condition �6� reads f0��2 /L3.
The crossover between high and low frequencies occurs
when the frequency equals the viscous damping, i.e., for �
�� /L2. Note that the Reynolds number, the ratio between
the nonlinear and viscous term, is Re= f0L /�� in the high
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frequency limit and Re= f0L3 /�2 in the low frequency limit:
in both cases it is proportional to the amplitude of the driving
and can be made arbitrarily small for weak driving.

In connection with periodic driving often the Strouhal
number St=L� /U0 is used. It measures the importance of the
time derivative relative to the nonlinear term. Since we want
to work in a range of forcings where we can use the linear
equations the Strouhal number can become large. So if the
nonlinear term is small we have small Reynolds number but
large Strouhal number and a nonvanishing product of both. It
should be noted, however, that the term of reference for both
expressions, the nonlinear term, can be neglected for the
limit of small driving that we are interested in here. We,
therefore, find neither the Reynolds number nor the Strouhal
number very useful in characterizations of the system for
small forces f0.

The characteristic quantities that follow from a low and a
high frequency analysis are collected in Table I. For the ex-
periments �11–13� typical numbers are L�10−2 m, �
�1 Hz, and �=10−6 m2/s, so that � /L2�10−2 s−1�� and
the experiments are in the high frequency regime. The veloc-
ity fields are U0�10−2 m/s, so that the Reynolds numbers
are Re�100. Nevertheless, the nonlinear terms in the
Navier-Stokes equation can be neglected.

III. EIGENMODE EXPANSION

Without the inertial term the Navier-Stokes equation be-
comes an inhomogeneous linear differential equation and so-
lutions can conveniently be expanded in terms of eigen-
modes of the homogeneous equation. Therefore let u� be
divergence-free velocity fields that satisfy the boundary con-
ditions as well as

�u� = − �u�. �7�

Then both the velocity field and the driving can be expanded
in these modes,

u = �
�

c��t�u��x� , �8�

and

f = �
�

f�u��x� , �9�

and the equations for the individual amplitudes become

ċ� = − ��c� + f0f�ei�t. �10�

The solution

c��t� =
f0f�

�� + i�
ei�t �11�

shows that each eigenmode � responds with a delay, c��t�
�exp�i�t− i���, where the phase shift is given by

�� = atan� �

��
	 . �12�

This phase shift depends on the frequency of the driving and
also on the relaxation damping rate �� of the eigenmode �.
If the driving has the reversal symmetry �3� and contains
only a single mode, the reversal symmetry persists, but with
respect to an origin of time shifted by �� /�, as allowed for in
Eq. �4�. But as soon as modes with different damping con-
stants � appear in the forcing, they will have reversal sym-
metry with respect to a different zero of time, and in their
superposition the reversal symmetry is lost. Since the phase
shifts approach zero in the limit of vanishing frequency and
approach 	 /2 for infinite frequency this viscous dephasing
should be strongest if the frequency of driving is compatible
to the damping rates of the modes that are driven.

Should the driving couple to a single eigenmode of the
system only, more general time dependencies will still give a
complete reversal in the dynamics. Take a forcing of mode �
with a general time dependence g�t� that need not be peri-
odic. Then f= f0u��x�g�t� and the equation for the velocity
response becomes

ċ� = − ��c� + f0g�t� �13�

with solution

c��t� = f0

−


t

g�t��e−���t−t��dt�. �14�

The equations for particles in that velocity field then become
ẋ�t�=u�(x�t�)c��t�. The time dependence on the right-hand
side can be eliminated by a transformation of time, d�
=c��t�dt, whereby the equations for the trajectories become
dx /d�=u(x���). Thus particles will return to their initial con-
ditions as long as



−





c��t�dt = 0. �15�

Juggling around the integrals this is equivalent to

TABLE I. Characteristic quantities for low frequencies ��
�� /L2� and for high frequencies ��
� /L2�. The velocity scale U0

is determined as described in the text, fmax is the maximal amplitude
from the estimate �6�, Re=U0L /� is the Reynolds number, and
Remax the maximal Reynolds number for maximal driving ampli-
tude fmax. The Strouhal number St is inversely proportional to the
driving amplitude f0 and will diverge for small amplitudes. Note
that in the high frequency case the Reynolds number increases lin-
early with frequency and can become large without the nonlinear
terms becoming important.

Low � High �

U0 f0L2 /� f0 /�

fmax �2 /L3 �2L

Re f0L3 /�2 f0L /��

Remax 1 �L2 /�

St �� / �f0L� �2L / f0
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−





g�t��dt� = 0, �16�

i.e., as long as the driving integrates to zero, so does the
motion of the particles.

IV. NUMERICAL EXAMPLE

The above discussion is completely general and applies to
both 3D and 2D flows. The presentation for 2D flows is
simplified by the introduction of stream functions for both
velocity field and driving force. A detailed discussion of the
relation between Lorentz force, fluid response, boundary
conditions, and two-dimensionality has been given in �14�.
We here assume that flow and forcing are 2D and work with
stream function representations for both. With � f�r�
= �curl f�r��z and u�r , t�=curl(��r , t�ez) the equation that has
to be solved is

�t�� = ���� − f0� fe
i�t. �17�

In an unbounded domain the natural eigenstates are Fourier
modes. In view of the cellular structures used in the experi-
ments, we use a superposition of two modes,

� f = kx sin kxx cos kyy + 5kx sin 5kxx cos kyy . �18�

The phase delays for the two modes are atan�� /�k1
2� and

atan�� /�k2
2�, where k1

2=kx
2+ky

2 and k2
2=25kx

2+ky
2 are the norm

of the wave vectors. The phase difference ��=�1−�2 is
maximal for �=�k1k2, with a value �max=atan��k2

2

−k1
2� / �2k2k1��.
For the numerical simulations we take kx=1 and �=1 and

ky =�2. The eigenvalues of the Laplacian for the modes then
are �1=3 and �2=27 and the stream function of the resulting
velocity field is

� =
f0

3�9 + �2
sin��t − �1�sin x cos �2y

+
5f0

27�729 + �2
sin��t − �2�sin 5x cos �2y . �19�

The phase delays are �1=atan�� /3� and �2=atan�� /27�.
Their difference vanishes for low frequencies, becomes ex-
tremal for �m=9 and decays slowly towards zero again for
high frequencies. Isocontours of the instantaneous stream
function at times when only one mode is present are shown
in Fig. 1. These differences in the instantaneous flow field
drive the chaotic advection.

The velocity field preserves the symmetry lines x=0, x
=	, and y= ±	 /2�2 so that no particles can cross between
cells. The dimension of this fundamental cell is a quarter of
the period box, which has lengths 2	�2	 /�2. The four
copies of the fundamental domain that fit into the period box
differ only in orientation of the vortices: the one to the right
and above has negative � and thus an opposite sense of
rotation, and the one along the diagonal has the same sign
and the same sense of rotation. The images of particle dy-
namics in the fundamental domain can thus be extended in a
checkerboardlike pattern throughout the plane.

To map out the dynamics we use the stroboscopic records
of the position after full periods of the driving. Figure 2
shows such stroboscopic surfaces of section for different
driving amplitudes f0. The breaking of reversal symmetry is

FIG. 1. �Color online� Isocontours of the instantaneous stream
functions for the two eigenmodes used in the numerical simulations.
Only the fundamental cell 0�x�	 and �y��	 /2�2 is shown. The
gray shading in the top frame corresponds to one sense of orienta-
tion. The lighter and darker shades in the bottom frame indicate
vortices of different orientations.

FIG. 2. Surfaces of section for 100 different initial conditions
followed for 200 periods of the driving. The amplitudes f0 of the
forcing are �a� 600 and �b� 1000. The frequency is �=40.0.
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evident already for the weakest driving shown, f0=600: the
particles do not return to their starting point but trace out
tori. As the driving increases small regions of chaotic mo-
tions appear near the separatrices between the tori, and
within the tori chains of resonances form. For larger driving
the chaotic regions grow and overlap to form a chaotic sea
that covers almost all of the fundamental cell. While general
time dependent stream functions can give chaotic motions it
is interesting to note that the pattern of motions does not
resemble anything of the underlying velocity field. For in-
stance, the stream function has a local extremum for all times
at x=	 /2, y=0. However, in the final pattern this point is not
an elliptic fixed point but a hyperbolic one. The transition
comes about through a parametric resonance.

We have studied various combinations of wave vectors
and frequency and found the high frequency case with flows
of comparable amplitude to be most favorable for the appear-
ance of chaos. The scenario for the transition to chaos seems
compatible with Kolmogorov-Arnold-Moser �KAM� theory,
where tori with rational winding numbers break up first and
those with irrational winding numbers survive until the per-
turbations reach a certain strength. However, in order to for-
mally connect it to KAM theory a zeroth order stream func-
tion that does not correspond to trivial reversible dynamics
has to be identified.

The experiments �11–13� could allow experimental tests
of the theory. Perhaps the most accessible prediction is the
phase difference between forcing and response, that should
show up in Fourier decompositions of the velocity field. This

indicator is then fairly independent of uncertainties that
come from the spatial dependence of the magnetic fields and
are possible in the presence of inertia. Further tests could be
based on modifications of the driving protocol, allowing for
a transition from sinusoidal, reversible driving to asymmetric
irreversible drivings. The latter may be realized with a con-
stant offset to the sinusoidal driving or additions of terms
like cos 2�t. For theoretical discussions the constant offset
has the advantage that it connects immediately to a KAM
type scenario, with the constant current stream function as
the unperturbed Hamiltonian and the periodic modulation as
perturbation.

Nontrivial advection by a nonreversible flow despite a
reversible driving is a fairly general phenomenon in driven
Stokes flows. It occurs, for instance, also near a periodically
oscillating sphere. The presence of large scale advection pat-
terns can enhance particle dispersion, even before the onset
of chaos �as observed, e.g., in studies in cellular Rayleigh-
Bénard convection �15��. Outside the experiments that trig-
gered this study, the relevant frequency and amplitude range
seems to be most easily realized in biological situations such
as the flows around oscillating flagellae or in micro- and
nano-mechanical devices.
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